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ESTIMATE OF THE ERROR 
GEOMETRICALLY NON-LINEAR 

OCCURRING IN THE LINEARIZATION OF 
PROBLEMS OF THE THEORY OF ELASTICITY* 

&',A, MISYURA 

Error estimates are constructed for solving geometrically linear 
elasticity theory problems for small displacement gradients. It is 
shown that the solutions of geometrically non-linear and their correspond- 
ing linear problems differ in the norm L, by terms of the order of the 
displacement gradients themselves. Certain sufficient conditions for 
which the linearization procedure is legitimate for small deformations 
are established as a function of the geometry of the elastic body in 
the undeformed state. The reasons why the linearization of the non-linear 
problem for small deformations can result in an error for bodies of shell 
or bar type are clarified. 

Kirchhoff /l/ himself noted that the identification of the deformed 
and undeformed states of a body, customary in classical (geometrically 
linear) elasticity theory, is a supplementary hypothesis of a mathematical 
nature. Indeed, the problem of geometrically non-linear theory in the 
case when the displacement gradients are small can be considered as a 
problem with a small parameter. Ascribing the order of smallness A to 
the displacement gradients and discarding terms of order A and higher 
as compared with the principal terms in all the relationships of the 
geometrically non-linear theory,weobtaintheequations ofthegeometrically 
linear theory. It is clear that such a procedure induces an error in 
the solution of the geometrically non-linear problem. Consequently, it 
is important to estimate it and thereby to provide a basis for the 
legitimacy of linearizing geometrically non-linear problems for small 
displacement gradients. 

1. The error of the linear theory for small displacement gradients. The 
error estimate of linear-theory solutions will be understood below to be the estimate of the 
difference pa-p* in some norm, where p* is the solution of the geometrically non-linear 
problem while p” is the solution of its corresponding geometrically linear problem (P"? P* 
can be stress, strain, or displacement fields of points of the elastic body), The error of 
the solutions should not be confused with the error of the linear-theory equations themselves. 
This latter will be defined as the relative maqnitude of the small terms being discarded as 
compared with the principal terms in the relationships of geometrically non-linear theory and 
equals A. 

Let xi be the Cartesian coordinates of an observer in R3. Let E" denote the individual 
Lagrange coordinates of points of an elastic body. Later the indices s,j,li . . . . a, b,c . . . take 
the values 1, 2, 3; the former correspond to projections on the x1 coordinate axes, and the 
latter, on the axes Ea. We denote the coordinates of points of an elastic body in the 
undeformed state by .??'(E") and in the deformed state by x'(y). In the undeformed state the 
parameters E yield a certain curvilinear system of coordinates in R3 whose metric tensor 

is gob0 z 6ijz,of xi"'; xaoi c xi,," c 3dz”‘fd$u. Deformations of a continuous medium are described by 

the tensor sob = (x,~'x~,. -gtio)f2, xsi z Zi,a ZE ~3x~f8~~. It is expressed in terms of the displacement 
vector as follows: 

Later the indices a, b,c... will be discarded by using the metric g,,‘. 
We assume that the elastic body that occupies the domain V in the undeformed state is 

deformed under the effect of certain "dead" weights F, and surface forces Pi given on the 
parts SO of the boundary av of the domain V. The true solution of the aroblem nosed is found 
from the condition of stationarity of the Lagrange functional /2, 3/ - 
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in the set of functions ~'(5") satisfying the constraints 

xi (E”) is, = 2, s, = av\s, (1.3) 
(dt is the volume element ofthedomain V, da is the element of area of the surface S,). 
Conditions (1.3) mean that displacements of the points are given on part of the boundary of 

the elastic body s,. 

Furthermore, a physically linear elastic body is considered. Its elastic energy density 
has the form U = 1/Z ,En'~cdsob~,d (Fokd is the elastic-moduli tensor). 

The Euler equations of the variational problem (1.2), (1.3) are written as follows: 

(1.4) 

where pL ii is the Piola-Kirchhoff stress tensor, n,> are components of the normal vector to Sn, 
and the semicolon denotes the operation of covariant differentiation with respect to the 

affine property of the 5" coordinate system in the undeformed state. Eqs.(l.Q) and (1.5) 
areaclosed system of equations of the geometrically non-linear theory of elasticity for a 

physically linear material. 

The closed system of linear-theory equations contains the boundary conditions (1.3), (1.5), 

the equilibrium Eq. (l-6), the equation of state connecting the stress tensor c"b with the 
strains (1.7), and the linear connection between the strains and stresses (1.8): 

&+F*=O (1.6) 

P nh = (XaO’Wi. * + Xh%i, .)/I2 tf.8) 

The technique for obtaining error estimates of the solutions of linear theory for small 

displacement gradients is based on the Prager-Synge identity /4/. Let us formulate it. 

Let crAba be the true solution of the linearized problem. Let (JUb denote the statically 
admissible stress field in the linear problem, i.e., the stress field satisfying (1.6) and 

the boundary conditions (1.5). If w' is the displacement field of points of an elastic body 

that satisfies the kinematic conditions 11.31, then the stress field cab corresponding to 

the displacement field IL" by means of (1.8) and (1.7) is called kinematically admissible. 

The integral 

where E*abra is the tensor of elastic compliance, determines the additional energy of a 

geometrically and physically linear elastic body. The identity 

E*[&--(%b ,- co@]= E* (%b --ab)/4 w 

has been proved /4/. 
Since the additional energy is a positive-definite quadratic form in @,b, then E”“s can 

be identified with the norm &(V) in the space of all possible stress fields: 

(1.10) 

The constants CL and y depend only on the elastic compliance tensor Etb.obCd 

The identity (1.9) shows that the stress field (a,, i- 0;,,)/2 approaches the exact solution 

of the problem in the norm .&well, provided the additional energy is small in the difference 
between the statically and kinematically admissible stress fields. In solving the non-linear 

problem u,?,* the fields cenb. sob are constructed, between which the point-by-point difference 

is a quantity oftheorder of A’, where A is the scale of the change in the displacement 

gradients defined by the relationship 

(w*i is the displacement field of points of an elastic body and the solution of the geometri- 

cally non-linearproblem). In the norm L, the difference mentioned will be a quantity of the 



order of AzjV11'2(IVI is the volume of the domain VI, which yields the required error 

estimate of the solutions of the geometrically non-linear theory in the norm L, for small 

displacement gradients because of (1.9) and (1.10). 

Theorem. As compared with the geometrically non-linear theory the error in the solutions 

of the geometrically linear theory of elasticity is determined by the inequalities: 

where ail*, ell*, wi* are the solution of the geometrically non-linear problem, oij”* etio, win are 

the solution of its corresponding geometrically linear problem, and A is the scale of variation 

of the displacement gradients in the non-linear problem. The last inequality in (1.11) assumes 

no rigid body displacements. The constants C,,C,,CS depend only on the tensor of the elastic 

moduli @'I. Moreover, the constant C3 also depends on the geometry of the domain that the 

elastic body occupies in the undeformed state. 

Proof. Let pd*'be the Piola-Kirchhoff tensor corresponding to the solution of the non- 

linear problem. For simplicity in the subsequent discussions, we set 1p' (E") = 5' (in the 

undeformed state the Lagrange and Cartesian coordinates coincide). This permits identification 

of the indices i,j,k... with p,b,c . . . . Then the equilibrium equations of the non-linear 

theory (1.4) take the form p,jz’ f F’= 0 and are in agreement with the equilibrium equations 

U,jii + F' = 0 of the geometrically linear theory. It hence follows that the Piola-Kirchhoff 

stress field pii* is statically admissible in the geometrically linear problem (the static 

boundary conditions (1.5) are common for the linear and non-linear problems). 

The kinematically admissible field of stresses 

field wi* has the form uii = E”” (QJ* + wI,k*)/2. 
cij corresponding to the displacement 

Then 

*i alJ 
5l T-u ij = 1 w~Ejl~n~~ tw*m, ,, + w;, m + (1.12) 

*S 
w, ,,,w: ,,,)/a + Eijm”w~~w,*,,,/2 I< xA* 

where x is independent of A and is just a function of the elastic constants of the material. 

As statically admissible in the linear problem we select the field of stress p’j:i?’ = p”. 

Since E* (atjo - ~ij)< E* (ail - tiij) then by using (l.lO), (1.12) as well as the condition that 

pi]* = ai*” (6kj f wn,,*) while ukl* is a quantity of order A, we obtain the first estimate of 

(1.11). By virtue of the linearity of Hooke's law, the error estimate of the gometrically 
linear theory in deformations follows from it at once (the second estimate in (1.11)). 

We will show that an analogous estimate also holds for the displacement field. We will 

assume that the rigid body displacements are eliminated because of some constraints. We let 

i,, denote the linearized strain tensor corresponding to the displacement field u: ,* :Eij = 

(wi,,* + ZD~,~*)/~. As a corollary of the Korn inequality 

under the constraints made on the displacement field, the following estimate holds 

11 w,* 1) = [ j w*jw** dt]“’ < Ii 11 Eij 11 (1.14) 

Hence 

II t(.,O -. w,* II <K 11 E,]O - F,, ;I (1.15) 

The constants K,, K in (l-13), (1.14) depend only on the geometry of the domain V. Since 

Eij * = Ri, + (W,i*B,k,j*)/2 the inequality 

II El,* - z<j II < ‘/‘~Ko 11 Ft> jl* (1.16) 

follows from (1.13). 

We rewrite the right side of (1.15) as follows I[E~,'- Z*j 11 < I/ hij - Eij* II + II Efj* - eij‘ II 

which together with (1.19) and (1.11) yield the estimate required (the last inequality in 

(1.11)). 

Remark lo. The estimates (1.11) can be modified if the quantity 

A* = // (&o~;',"w;, j)"' [I 11' I-'/J 

is introduced as the scale of variation of the displacement gradients. 

Then the inequality (1.12) takes the form 

* jlJJij - 5xjIj < %A*" 1 v I”1 

This does not alter the course of the discussion, and the modification of the inequalities 
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(1.11) is related to the replacement of A by A*. 

20 . The estimates (1.11) are integral estimates. Appropriate point-by-point estimates 
follow directly from the Sobolev imbedding theorems. The question of transferring from 
integral estimates of the form (1.11) to point-by-point estimates is examined in detail in 

/6/, for instance. 

2. Linearization of geometrically non-linear problems for small deformations. 
The legitimacy of linearizing geometrically non-linear problems for small displacement gradients 

was proved in Sect.1. It is natural to pose the question: would an analogous assertion be 
valid if only the deformations are small. The answer is in the negative. An illustration is 
thin shells; despite the smallness of the deformations their displacement can reach finite 

values. Let us mention certain criteria enabling a class of problems to be isolated in which 
the linearization is legitimate under small deformations. 

Let &*,a be the root mean square amplitudes of true and linear deformations s* = 

I v I 4 '* II Eij* II, z = 1 V I-‘/z(I Fiji/. The triangle inequality enables us to obtain the following 
relationship from (1.16) 

1 E* - E ) < ‘/zK,62 (2.1) 

We assume that the constant K, in inequality (1.13) is the best. It is clear that not 

all positive numbers E*,P satisfy (2.1). The set of solutions of inequality (2.1) in the 

plane {a*, f} occupies a certain domain (it is bounded by the parabolas a* = l/,K,Pz + P, 
E* = llpKo c2 + p2 in the figure and is shaded). 

We assume that the true deformations of the elastic body 

are small: E* <I. If it follows from this that the linear 

deformations are also small (B(( 1) then by virtue of (1.13) 

the displacement gradients will also turn out to be small 

(A* <I for K, = 0 (1)). It then follows from the theorem 

proved in Sect.1 that linearization of geometrically non-linear 

problems is legitimate even for small deformations. However, 

inequality (3.1) (see the figure) allows those states of the 

elastic body for which a* < 1 while F-1 (for instance, the 

point A). Such a situation is obviously observed for shells. 

We consider it in more detail. 

A point in the shaded domainin the figure corresponds to 

any deformable state of the elastic body, and a curve issuing 

from the origin corresponds to the process of deformation from 

the unstressed state. In order to be incident at the point A 

during deformation, it is necessary to intersect the vertical 

line b that corresponds to the statesofstress with E* > 1/(2K,). 
Let E, denote the limiting elastic deformations in the elastic body. If K, > 1/(2en), then it 

follows from the above that the state A is not allowable within the framework of the model of 

a physically linear material. In this case the space of elastic body states in the plane 
E*, 7 is bounded by the line c and is represented by the domain D. It can be shown that 

&< 2E* for the states of stress belonging to the domain D. The latter at once results in 

the fact that the linearization of geometrically non-linear problems is legitimate in such a 

situation even for small deformations. 

The Korn constant Ko, a function of the geometry of the domain V which the elastic body 

occupies even in the undeformed state, is in the condition E,,< 1/(2K,) . Therefore, deter- 
mination of the class of problems in which the linearization is legitimate even for small 

deformations would reduce to investigation of the dependence of the Korn constant on the 

geometry of the undeformed state of an elastic body. Let us summarize what has been proved. 

Lemma. Linearization of geometrically non-linear problems for small deformations is 

legitimate for elastic bodies for which the Korn constant K, is less than I/(&,), where P, 

are the ultimate elastic deformations. The error in the solution of the geometrically linear 

problem in the norm L, is here the magnitude of the deformations themselves. 
Finding the Korn constant for any of the domains is a separate and not quite SO Simple 

mathematical problem. We will merely note that for bodies geometry has small parameters 

(shells, plates, and rods) the linearization of geometrically non-linear problems for small 

deformations can result in errors. This is related to the following. Let h be the shell or 

bar thickness. It is shown* (*See also: Misyura, V.A., Effect of losses of accuracy of the 

classical theory of shells. Candidate Dissertation, Moscow State University, 1984) that the 
Korn constant for such bodies grows as C/h or more rapidly as il-0 ( C is independent of h). 

For h small K, becomes greater than i/(2&,,). In this case the state A becomes allowable within 

the framework of the model of an elastic material. Therefore, smallness of the deformation 

doesnothere ensure smallness of the displacement gradients, which indeed clarifies the 
possibility of error origination during linearization of non-linear problems only for Small 
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deformations. 

The author is grateful to V.L. Berdichevskii for discussing the results. 
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DYNAMIC DEFORMATION OF INCOMPRESSIBLE MEDIA* 

M.A. ZADOYAN 

A class of plane and axisymmetric problems concerning incompressible media 

with power law hardening, deformed over time according to special laws, 

is considered. Such media include, in fact, hardening plastic, non-linearly 

elastic and non-linearly viscous bodies whose compressibility can be 
neglected. The dynamic effects are studied under which the points of the 

body execute oscillatory or monotonic motions with respect to time. The 

external forces corresponding to dynamic deformation of the media in 
question are given. Problems of unloading are omitted for brevity; only 
the stages of the motion leading to loading will be considered. 

Wave processes in plastic and other non-linear compressible bodies 
have been investigated in many papers (/l-8/ et al.). The problems of 

dynamic deformation under the assumption that the material is incompressible 

merits special attention, especially from the point of view of determining 

how the inertial forces affect the strength of the bodies. 

1. Plane deformation, The relations for the medium in question under the conditions 
of plane deformation are given in polar coordinates and in the usual notation in the form of: 

the equations of motion 

the relation connecting the deformation and stress intensities, and the relations 

connecting the deformation, stress and displalement components 

E0 = ka,” (1.2) 

Fo = l& - &$ + 4&j, (To = f lqq - IQ)* + 4&l 
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